1
0
Files
electrum/electrum/bip32.py
SomberNight 2f1095510c bitcoin.py/transaction.py: API changes: rm most hex usage
Instead of some functions operating with hex strings,
and others using bytes, this consolidates most things to use bytes.

This mainly focuses on bitcoin.py and transaction.py,
and then adapts the API usages in other files.

Notably,
- scripts,
- pubkeys,
- signatures
should be bytes in almost all places now.
2024-04-29 17:10:26 +00:00

527 lines
19 KiB
Python

# Copyright (C) 2018 The Electrum developers
# Distributed under the MIT software license, see the accompanying
# file LICENCE or http://www.opensource.org/licenses/mit-license.php
import binascii
import hashlib
import struct
from typing import List, Tuple, NamedTuple, Union, Iterable, Sequence, Optional
from .util import bfh, BitcoinException
from . import constants
from . import ecc
from .crypto import hash_160, hmac_oneshot
from .bitcoin import EncodeBase58Check, DecodeBase58Check
from .logging import get_logger
_logger = get_logger(__name__)
BIP32_PRIME = 0x80000000
UINT32_MAX = (1 << 32) - 1
BIP32_HARDENED_CHAR = "h" # default "hardened" char we put in str paths
def protect_against_invalid_ecpoint(func):
def func_wrapper(*args):
child_index = args[-1]
while True:
is_prime = child_index & BIP32_PRIME
try:
return func(*args[:-1], child_index=child_index)
except ecc.InvalidECPointException:
_logger.warning('bip32 protect_against_invalid_ecpoint: skipping index')
child_index += 1
is_prime2 = child_index & BIP32_PRIME
if is_prime != is_prime2: raise OverflowError()
return func_wrapper
@protect_against_invalid_ecpoint
def CKD_priv(parent_privkey: bytes, parent_chaincode: bytes, child_index: int) -> Tuple[bytes, bytes]:
"""Child private key derivation function (from master private key)
If n is hardened (i.e. the 32nd bit is set), the resulting private key's
corresponding public key can NOT be determined without the master private key.
However, if n is not hardened, the resulting private key's corresponding
public key can be determined without the master private key.
"""
if child_index < 0: raise ValueError('the bip32 index needs to be non-negative')
is_hardened_child = bool(child_index & BIP32_PRIME)
return _CKD_priv(parent_privkey=parent_privkey,
parent_chaincode=parent_chaincode,
child_index=int.to_bytes(child_index, length=4, byteorder="big", signed=False),
is_hardened_child=is_hardened_child)
def _CKD_priv(parent_privkey: bytes, parent_chaincode: bytes,
child_index: bytes, is_hardened_child: bool) -> Tuple[bytes, bytes]:
try:
keypair = ecc.ECPrivkey(parent_privkey)
except ecc.InvalidECPointException as e:
raise BitcoinException('Impossible xprv (not within curve order)') from e
parent_pubkey = keypair.get_public_key_bytes(compressed=True)
if is_hardened_child:
data = bytes([0]) + parent_privkey + child_index
else:
data = parent_pubkey + child_index
I = hmac_oneshot(parent_chaincode, data, hashlib.sha512)
I_left = ecc.string_to_number(I[0:32])
child_privkey = (I_left + ecc.string_to_number(parent_privkey)) % ecc.CURVE_ORDER
if I_left >= ecc.CURVE_ORDER or child_privkey == 0:
raise ecc.InvalidECPointException()
child_privkey = int.to_bytes(child_privkey, length=32, byteorder='big', signed=False)
child_chaincode = I[32:]
return child_privkey, child_chaincode
@protect_against_invalid_ecpoint
def CKD_pub(parent_pubkey: bytes, parent_chaincode: bytes, child_index: int) -> Tuple[bytes, bytes]:
"""Child public key derivation function (from public key only)
This function allows us to find the nth public key, as long as n is
not hardened. If n is hardened, we need the master private key to find it.
"""
if child_index < 0: raise ValueError('the bip32 index needs to be non-negative')
if child_index & BIP32_PRIME: raise Exception('not possible to derive hardened child from parent pubkey')
return _CKD_pub(parent_pubkey=parent_pubkey,
parent_chaincode=parent_chaincode,
child_index=int.to_bytes(child_index, length=4, byteorder="big", signed=False))
# helper function, callable with arbitrary 'child_index' byte-string.
# i.e.: 'child_index' does not need to fit into 32 bits here! (c.f. trustedcoin billing)
def _CKD_pub(parent_pubkey: bytes, parent_chaincode: bytes, child_index: bytes) -> Tuple[bytes, bytes]:
I = hmac_oneshot(parent_chaincode, parent_pubkey + child_index, hashlib.sha512)
pubkey = ecc.ECPrivkey(I[0:32]) + ecc.ECPubkey(parent_pubkey)
if pubkey.is_at_infinity():
raise ecc.InvalidECPointException()
child_pubkey = pubkey.get_public_key_bytes(compressed=True)
child_chaincode = I[32:]
return child_pubkey, child_chaincode
def xprv_header(xtype: str, *, net=None) -> bytes:
if net is None:
net = constants.net
return net.XPRV_HEADERS[xtype].to_bytes(length=4, byteorder="big")
def xpub_header(xtype: str, *, net=None) -> bytes:
if net is None:
net = constants.net
return net.XPUB_HEADERS[xtype].to_bytes(length=4, byteorder="big")
class InvalidMasterKeyVersionBytes(BitcoinException): pass
class BIP32Node(NamedTuple):
xtype: str
eckey: Union[ecc.ECPubkey, ecc.ECPrivkey]
chaincode: bytes
depth: int = 0
fingerprint: bytes = b'\x00'*4 # as in serialized format, this is the *parent's* fingerprint
child_number: bytes = b'\x00'*4
@classmethod
def from_xkey(
cls,
xkey: str,
*,
net=None,
allow_custom_headers: bool = True, # to also accept ypub/zpub
) -> 'BIP32Node':
if net is None:
net = constants.net
xkey = DecodeBase58Check(xkey)
if len(xkey) != 78:
raise BitcoinException('Invalid length for extended key: {}'
.format(len(xkey)))
depth = xkey[4]
fingerprint = xkey[5:9]
child_number = xkey[9:13]
chaincode = xkey[13:13 + 32]
header = int.from_bytes(xkey[0:4], byteorder='big')
if header in net.XPRV_HEADERS_INV:
headers_inv = net.XPRV_HEADERS_INV
is_private = True
elif header in net.XPUB_HEADERS_INV:
headers_inv = net.XPUB_HEADERS_INV
is_private = False
else:
raise InvalidMasterKeyVersionBytes(f'Invalid extended key format: {hex(header)}')
xtype = headers_inv[header]
if not allow_custom_headers and xtype != "standard":
raise ValueError(f"only standard xpub/xprv allowed. found custom xtype={xtype}")
if is_private:
eckey = ecc.ECPrivkey(xkey[13 + 33:])
else:
eckey = ecc.ECPubkey(xkey[13 + 32:])
return BIP32Node(xtype=xtype,
eckey=eckey,
chaincode=chaincode,
depth=depth,
fingerprint=fingerprint,
child_number=child_number)
@classmethod
def from_rootseed(cls, seed: bytes, *, xtype: str) -> 'BIP32Node':
I = hmac_oneshot(b"Bitcoin seed", seed, hashlib.sha512)
master_k = I[0:32]
master_c = I[32:]
return BIP32Node(xtype=xtype,
eckey=ecc.ECPrivkey(master_k),
chaincode=master_c)
@classmethod
def from_bytes(cls, b: bytes) -> 'BIP32Node':
if len(b) != 78:
raise Exception(f"unexpected xkey raw bytes len {len(b)} != 78")
xkey = EncodeBase58Check(b)
return cls.from_xkey(xkey)
def to_xprv(self, *, net=None) -> str:
payload = self.to_xprv_bytes(net=net)
return EncodeBase58Check(payload)
def to_xprv_bytes(self, *, net=None) -> bytes:
if not self.is_private():
raise Exception("cannot serialize as xprv; private key missing")
payload = (xprv_header(self.xtype, net=net) +
bytes([self.depth]) +
self.fingerprint +
self.child_number +
self.chaincode +
bytes([0]) +
self.eckey.get_secret_bytes())
assert len(payload) == 78, f"unexpected xprv payload len {len(payload)}"
return payload
def to_xpub(self, *, net=None) -> str:
payload = self.to_xpub_bytes(net=net)
return EncodeBase58Check(payload)
def to_xpub_bytes(self, *, net=None) -> bytes:
payload = (xpub_header(self.xtype, net=net) +
bytes([self.depth]) +
self.fingerprint +
self.child_number +
self.chaincode +
self.eckey.get_public_key_bytes(compressed=True))
assert len(payload) == 78, f"unexpected xpub payload len {len(payload)}"
return payload
def to_xkey(self, *, net=None) -> str:
if self.is_private():
return self.to_xprv(net=net)
else:
return self.to_xpub(net=net)
def to_bytes(self, *, net=None) -> bytes:
if self.is_private():
return self.to_xprv_bytes(net=net)
else:
return self.to_xpub_bytes(net=net)
def convert_to_public(self) -> 'BIP32Node':
if not self.is_private():
return self
pubkey = ecc.ECPubkey(self.eckey.get_public_key_bytes())
return self._replace(eckey=pubkey)
def is_private(self) -> bool:
return isinstance(self.eckey, ecc.ECPrivkey)
def subkey_at_private_derivation(self, path: Union[str, Iterable[int]]) -> 'BIP32Node':
if path is None:
raise Exception("derivation path must not be None")
if isinstance(path, str):
path = convert_bip32_strpath_to_intpath(path)
if not self.is_private():
raise Exception("cannot do bip32 private derivation; private key missing")
if not path:
return self
depth = self.depth
chaincode = self.chaincode
privkey = self.eckey.get_secret_bytes()
for child_index in path:
parent_privkey = privkey
privkey, chaincode = CKD_priv(privkey, chaincode, child_index)
depth += 1
parent_pubkey = ecc.ECPrivkey(parent_privkey).get_public_key_bytes(compressed=True)
fingerprint = hash_160(parent_pubkey)[0:4]
child_number = child_index.to_bytes(length=4, byteorder="big")
return BIP32Node(xtype=self.xtype,
eckey=ecc.ECPrivkey(privkey),
chaincode=chaincode,
depth=depth,
fingerprint=fingerprint,
child_number=child_number)
def subkey_at_public_derivation(self, path: Union[str, Iterable[int]]) -> 'BIP32Node':
if path is None:
raise Exception("derivation path must not be None")
if isinstance(path, str):
path = convert_bip32_strpath_to_intpath(path)
if not path:
return self.convert_to_public()
depth = self.depth
chaincode = self.chaincode
pubkey = self.eckey.get_public_key_bytes(compressed=True)
for child_index in path:
parent_pubkey = pubkey
pubkey, chaincode = CKD_pub(pubkey, chaincode, child_index)
depth += 1
fingerprint = hash_160(parent_pubkey)[0:4]
child_number = child_index.to_bytes(length=4, byteorder="big")
return BIP32Node(xtype=self.xtype,
eckey=ecc.ECPubkey(pubkey),
chaincode=chaincode,
depth=depth,
fingerprint=fingerprint,
child_number=child_number)
def calc_fingerprint_of_this_node(self) -> bytes:
"""Returns the fingerprint of this node.
Note that self.fingerprint is of the *parent*.
"""
# TODO cache this
return hash_160(self.eckey.get_public_key_bytes(compressed=True))[0:4]
def xpub_type(x: str):
assert x is not None
return BIP32Node.from_xkey(x).xtype
def is_xpub(text):
try:
node = BIP32Node.from_xkey(text)
return not node.is_private()
except Exception:
return False
def is_xprv(text):
try:
node = BIP32Node.from_xkey(text)
return node.is_private()
except Exception:
return False
def xpub_from_xprv(xprv):
return BIP32Node.from_xkey(xprv).to_xpub()
def convert_bip32_strpath_to_intpath(n: str) -> List[int]:
"""Convert bip32 path str to list of uint32 integers with prime flags
m/0/-1/1' -> [0, 0x80000001, 0x80000001]
based on code in trezorlib
"""
if not n:
return []
if n.endswith("/"):
n = n[:-1]
n = n.split('/')
# cut leading "m" if present, but do not require it
if n[0] == "m":
n = n[1:]
path = []
for x in n:
if x == '':
# gracefully allow repeating "/" chars in path.
# makes concatenating paths easier
continue
prime = 0
if x.endswith("'") or x.endswith("h"): # note: some implementations also accept "H", "p", "P"
x = x[:-1]
prime = BIP32_PRIME
if x.startswith('-'):
if prime:
raise ValueError(f"bip32 path child index is signalling hardened level in multiple ways")
prime = BIP32_PRIME
try:
x_int = int(x)
except ValueError as e:
raise ValueError(f"failed to parse bip32 path: {(str(e))}") from None
child_index = abs(x_int) | prime
if child_index > UINT32_MAX:
raise ValueError(f"bip32 path child index too large: {child_index} > {UINT32_MAX}")
path.append(child_index)
return path
def convert_bip32_intpath_to_strpath(path: Sequence[int], *, hardened_char=BIP32_HARDENED_CHAR) -> str:
assert isinstance(hardened_char, str), hardened_char
assert len(hardened_char) == 1, hardened_char
s = "m/"
for child_index in path:
if not isinstance(child_index, int):
raise TypeError(f"bip32 path child index must be int: {child_index}")
if not (0 <= child_index <= UINT32_MAX):
raise ValueError(f"bip32 path child index out of range: {child_index}")
prime = ""
if child_index & BIP32_PRIME:
prime = hardened_char
child_index = child_index ^ BIP32_PRIME
s += str(child_index) + prime + '/'
# cut trailing "/"
s = s[:-1]
return s
def is_bip32_derivation(s: str) -> bool:
try:
if not (s == 'm' or s.startswith('m/')):
return False
convert_bip32_strpath_to_intpath(s)
except Exception:
return False
else:
return True
def normalize_bip32_derivation(s: Optional[str], *, hardened_char=BIP32_HARDENED_CHAR) -> Optional[str]:
if s is None:
return None
if not is_bip32_derivation(s):
raise ValueError(f"invalid bip32 derivation: {s}")
ints = convert_bip32_strpath_to_intpath(s)
return convert_bip32_intpath_to_strpath(ints, hardened_char=hardened_char)
def is_all_public_derivation(path: Union[str, Iterable[int]]) -> bool:
"""Returns whether all levels in path use non-hardened derivation."""
if isinstance(path, str):
path = convert_bip32_strpath_to_intpath(path)
for child_index in path:
if child_index < 0:
raise ValueError('the bip32 index needs to be non-negative')
if child_index & BIP32_PRIME:
return False
return True
def root_fp_and_der_prefix_from_xkey(xkey: str) -> Tuple[Optional[str], Optional[str]]:
"""Returns the root bip32 fingerprint and the derivation path from the
root to the given xkey, if they can be determined. Otherwise (None, None).
"""
node = BIP32Node.from_xkey(xkey)
derivation_prefix = None
root_fingerprint = None
assert node.depth >= 0, node.depth
if node.depth == 0:
derivation_prefix = 'm'
root_fingerprint = node.calc_fingerprint_of_this_node().hex().lower()
elif node.depth == 1:
child_number_int = int.from_bytes(node.child_number, 'big')
derivation_prefix = convert_bip32_intpath_to_strpath([child_number_int])
root_fingerprint = node.fingerprint.hex()
return root_fingerprint, derivation_prefix
def is_xkey_consistent_with_key_origin_info(xkey: str, *,
derivation_prefix: str = None,
root_fingerprint: str = None) -> bool:
bip32node = BIP32Node.from_xkey(xkey)
int_path = None
if derivation_prefix is not None:
int_path = convert_bip32_strpath_to_intpath(derivation_prefix)
if int_path is not None and len(int_path) != bip32node.depth:
return False
if bip32node.depth == 0:
if bfh(root_fingerprint) != bip32node.calc_fingerprint_of_this_node():
return False
if bip32node.child_number != bytes(4):
return False
if int_path is not None and bip32node.depth > 0:
if int.from_bytes(bip32node.child_number, 'big') != int_path[-1]:
return False
if bip32node.depth == 1:
if bfh(root_fingerprint) != bip32node.fingerprint:
return False
return True
class KeyOriginInfo:
"""
Object representing the origin of a key.
from https://github.com/bitcoin-core/HWI/blob/5f300d3dee7b317a6194680ad293eaa0962a3cc7/hwilib/key.py
# Copyright (c) 2020 The HWI developers
# Distributed under the MIT software license.
"""
def __init__(self, fingerprint: bytes, path: Sequence[int]) -> None:
"""
:param fingerprint: The 4 byte BIP 32 fingerprint of a parent key from which this key is derived from
:param path: The derivation path to reach this key from the key at ``fingerprint``
"""
self.fingerprint: bytes = fingerprint
self.path: Sequence[int] = path
@classmethod
def deserialize(cls, s: bytes) -> 'KeyOriginInfo':
"""
Deserialize a serialized KeyOriginInfo.
They will be serialized in the same way that PSBTs serialize derivation paths
"""
fingerprint = s[0:4]
s = s[4:]
path = list(struct.unpack("<" + "I" * (len(s) // 4), s))
return cls(fingerprint, path)
def serialize(self) -> bytes:
"""
Serializes the KeyOriginInfo in the same way that derivation paths are stored in PSBTs
"""
r = self.fingerprint
r += struct.pack("<" + "I" * len(self.path), *self.path)
return r
def _path_string(self) -> str:
strpath = self.get_derivation_path()
if len(strpath) >= 2:
assert strpath.startswith("m/")
return strpath[1:] # cut leading "m"
def to_string(self) -> str:
"""
Return the KeyOriginInfo as a string in the form <fingerprint>/<index>/<index>/...
This is the same way that KeyOriginInfo is shown in descriptors
"""
s = binascii.hexlify(self.fingerprint).decode()
s += self._path_string()
return s
@classmethod
def from_string(cls, s: str) -> 'KeyOriginInfo':
"""
Create a KeyOriginInfo from the string
:param s: The string to parse
"""
s = s.lower()
entries = s.split("/")
fingerprint = binascii.unhexlify(s[0:8])
path: Sequence[int] = []
if len(entries) > 1:
path = convert_bip32_strpath_to_intpath(s[9:])
return cls(fingerprint, path)
def get_derivation_path(self) -> str:
"""
Return the string for just the path
"""
return convert_bip32_intpath_to_strpath(self.path)
def get_full_int_list(self) -> List[int]:
"""
Return a list of ints representing this KeyOriginInfo.
The first int is the fingerprint, followed by the path
"""
xfp = [struct.unpack("<I", self.fingerprint)[0]]
xfp.extend(self.path)
return xfp