replace TLSLite dependency with minimal RSA implementation
This commit is contained in:
517
lib/rsakey.py
Normal file
517
lib/rsakey.py
Normal file
@@ -0,0 +1,517 @@
|
||||
# This module uses functions from TLSLite (public domain)
|
||||
#
|
||||
# TLSLite Authors:
|
||||
# Trevor Perrin
|
||||
# Martin von Loewis - python 3 port
|
||||
# Yngve Pettersen (ported by Paul Sokolovsky) - TLS 1.2
|
||||
#
|
||||
|
||||
"""Pure-Python RSA implementation."""
|
||||
|
||||
|
||||
from __future__ import print_function
|
||||
import os
|
||||
import math
|
||||
import base64
|
||||
import binascii
|
||||
|
||||
from pem import *
|
||||
|
||||
|
||||
# **************************************************************************
|
||||
# PRNG Functions
|
||||
# **************************************************************************
|
||||
|
||||
# Check that os.urandom works
|
||||
import zlib
|
||||
length = len(zlib.compress(os.urandom(1000)))
|
||||
assert(length > 900)
|
||||
|
||||
def getRandomBytes(howMany):
|
||||
b = bytearray(os.urandom(howMany))
|
||||
assert(len(b) == howMany)
|
||||
return b
|
||||
|
||||
prngName = "os.urandom"
|
||||
|
||||
|
||||
# **************************************************************************
|
||||
# Converter Functions
|
||||
# **************************************************************************
|
||||
|
||||
def bytesToNumber(b):
|
||||
total = 0
|
||||
multiplier = 1
|
||||
for count in range(len(b)-1, -1, -1):
|
||||
byte = b[count]
|
||||
total += multiplier * byte
|
||||
multiplier *= 256
|
||||
return total
|
||||
|
||||
def numberToByteArray(n, howManyBytes=None):
|
||||
"""Convert an integer into a bytearray, zero-pad to howManyBytes.
|
||||
|
||||
The returned bytearray may be smaller than howManyBytes, but will
|
||||
not be larger. The returned bytearray will contain a big-endian
|
||||
encoding of the input integer (n).
|
||||
"""
|
||||
if howManyBytes == None:
|
||||
howManyBytes = numBytes(n)
|
||||
b = bytearray(howManyBytes)
|
||||
for count in range(howManyBytes-1, -1, -1):
|
||||
b[count] = int(n % 256)
|
||||
n >>= 8
|
||||
return b
|
||||
|
||||
def mpiToNumber(mpi): #mpi is an openssl-format bignum string
|
||||
if (ord(mpi[4]) & 0x80) !=0: #Make sure this is a positive number
|
||||
raise AssertionError()
|
||||
b = bytearray(mpi[4:])
|
||||
return bytesToNumber(b)
|
||||
|
||||
def numberToMPI(n):
|
||||
b = numberToByteArray(n)
|
||||
ext = 0
|
||||
#If the high-order bit is going to be set,
|
||||
#add an extra byte of zeros
|
||||
if (numBits(n) & 0x7)==0:
|
||||
ext = 1
|
||||
length = numBytes(n) + ext
|
||||
b = bytearray(4+ext) + b
|
||||
b[0] = (length >> 24) & 0xFF
|
||||
b[1] = (length >> 16) & 0xFF
|
||||
b[2] = (length >> 8) & 0xFF
|
||||
b[3] = length & 0xFF
|
||||
return bytes(b)
|
||||
|
||||
|
||||
# **************************************************************************
|
||||
# Misc. Utility Functions
|
||||
# **************************************************************************
|
||||
|
||||
def numBits(n):
|
||||
if n==0:
|
||||
return 0
|
||||
s = "%x" % n
|
||||
return ((len(s)-1)*4) + \
|
||||
{'0':0, '1':1, '2':2, '3':2,
|
||||
'4':3, '5':3, '6':3, '7':3,
|
||||
'8':4, '9':4, 'a':4, 'b':4,
|
||||
'c':4, 'd':4, 'e':4, 'f':4,
|
||||
}[s[0]]
|
||||
return int(math.floor(math.log(n, 2))+1)
|
||||
|
||||
def numBytes(n):
|
||||
if n==0:
|
||||
return 0
|
||||
bits = numBits(n)
|
||||
return int(math.ceil(bits / 8.0))
|
||||
|
||||
# **************************************************************************
|
||||
# Big Number Math
|
||||
# **************************************************************************
|
||||
|
||||
def getRandomNumber(low, high):
|
||||
if low >= high:
|
||||
raise AssertionError()
|
||||
howManyBits = numBits(high)
|
||||
howManyBytes = numBytes(high)
|
||||
lastBits = howManyBits % 8
|
||||
while 1:
|
||||
bytes = getRandomBytes(howManyBytes)
|
||||
if lastBits:
|
||||
bytes[0] = bytes[0] % (1 << lastBits)
|
||||
n = bytesToNumber(bytes)
|
||||
if n >= low and n < high:
|
||||
return n
|
||||
|
||||
def gcd(a,b):
|
||||
a, b = max(a,b), min(a,b)
|
||||
while b:
|
||||
a, b = b, a % b
|
||||
return a
|
||||
|
||||
def lcm(a, b):
|
||||
return (a * b) // gcd(a, b)
|
||||
|
||||
#Returns inverse of a mod b, zero if none
|
||||
#Uses Extended Euclidean Algorithm
|
||||
def invMod(a, b):
|
||||
c, d = a, b
|
||||
uc, ud = 1, 0
|
||||
while c != 0:
|
||||
q = d // c
|
||||
c, d = d-(q*c), c
|
||||
uc, ud = ud - (q * uc), uc
|
||||
if d == 1:
|
||||
return ud % b
|
||||
return 0
|
||||
|
||||
|
||||
def powMod(base, power, modulus):
|
||||
if power < 0:
|
||||
result = pow(base, power*-1, modulus)
|
||||
result = invMod(result, modulus)
|
||||
return result
|
||||
else:
|
||||
return pow(base, power, modulus)
|
||||
|
||||
#Pre-calculate a sieve of the ~100 primes < 1000:
|
||||
def makeSieve(n):
|
||||
sieve = list(range(n))
|
||||
for count in range(2, int(math.sqrt(n))+1):
|
||||
if sieve[count] == 0:
|
||||
continue
|
||||
x = sieve[count] * 2
|
||||
while x < len(sieve):
|
||||
sieve[x] = 0
|
||||
x += sieve[count]
|
||||
sieve = [x for x in sieve[2:] if x]
|
||||
return sieve
|
||||
|
||||
sieve = makeSieve(1000)
|
||||
|
||||
def isPrime(n, iterations=5, display=False):
|
||||
#Trial division with sieve
|
||||
for x in sieve:
|
||||
if x >= n: return True
|
||||
if n % x == 0: return False
|
||||
#Passed trial division, proceed to Rabin-Miller
|
||||
#Rabin-Miller implemented per Ferguson & Schneier
|
||||
#Compute s, t for Rabin-Miller
|
||||
if display: print("*", end=' ')
|
||||
s, t = n-1, 0
|
||||
while s % 2 == 0:
|
||||
s, t = s//2, t+1
|
||||
#Repeat Rabin-Miller x times
|
||||
a = 2 #Use 2 as a base for first iteration speedup, per HAC
|
||||
for count in range(iterations):
|
||||
v = powMod(a, s, n)
|
||||
if v==1:
|
||||
continue
|
||||
i = 0
|
||||
while v != n-1:
|
||||
if i == t-1:
|
||||
return False
|
||||
else:
|
||||
v, i = powMod(v, 2, n), i+1
|
||||
a = getRandomNumber(2, n)
|
||||
return True
|
||||
|
||||
def getRandomPrime(bits, display=False):
|
||||
if bits < 10:
|
||||
raise AssertionError()
|
||||
#The 1.5 ensures the 2 MSBs are set
|
||||
#Thus, when used for p,q in RSA, n will have its MSB set
|
||||
#
|
||||
#Since 30 is lcm(2,3,5), we'll set our test numbers to
|
||||
#29 % 30 and keep them there
|
||||
low = ((2 ** (bits-1)) * 3) // 2
|
||||
high = 2 ** bits - 30
|
||||
p = getRandomNumber(low, high)
|
||||
p += 29 - (p % 30)
|
||||
while 1:
|
||||
if display: print(".", end=' ')
|
||||
p += 30
|
||||
if p >= high:
|
||||
p = getRandomNumber(low, high)
|
||||
p += 29 - (p % 30)
|
||||
if isPrime(p, display=display):
|
||||
return p
|
||||
|
||||
#Unused at the moment...
|
||||
def getRandomSafePrime(bits, display=False):
|
||||
if bits < 10:
|
||||
raise AssertionError()
|
||||
#The 1.5 ensures the 2 MSBs are set
|
||||
#Thus, when used for p,q in RSA, n will have its MSB set
|
||||
#
|
||||
#Since 30 is lcm(2,3,5), we'll set our test numbers to
|
||||
#29 % 30 and keep them there
|
||||
low = (2 ** (bits-2)) * 3//2
|
||||
high = (2 ** (bits-1)) - 30
|
||||
q = getRandomNumber(low, high)
|
||||
q += 29 - (q % 30)
|
||||
while 1:
|
||||
if display: print(".", end=' ')
|
||||
q += 30
|
||||
if (q >= high):
|
||||
q = getRandomNumber(low, high)
|
||||
q += 29 - (q % 30)
|
||||
#Ideas from Tom Wu's SRP code
|
||||
#Do trial division on p and q before Rabin-Miller
|
||||
if isPrime(q, 0, display=display):
|
||||
p = (2 * q) + 1
|
||||
if isPrime(p, display=display):
|
||||
if isPrime(q, display=display):
|
||||
return p
|
||||
|
||||
|
||||
class RSAKey(object):
|
||||
|
||||
def __init__(self, n=0, e=0, d=0, p=0, q=0, dP=0, dQ=0, qInv=0):
|
||||
if (n and not e) or (e and not n):
|
||||
raise AssertionError()
|
||||
self.n = n
|
||||
self.e = e
|
||||
self.d = d
|
||||
self.p = p
|
||||
self.q = q
|
||||
self.dP = dP
|
||||
self.dQ = dQ
|
||||
self.qInv = qInv
|
||||
self.blinder = 0
|
||||
self.unblinder = 0
|
||||
|
||||
def __len__(self):
|
||||
"""Return the length of this key in bits.
|
||||
|
||||
@rtype: int
|
||||
"""
|
||||
return numBits(self.n)
|
||||
|
||||
def hasPrivateKey(self):
|
||||
return self.d != 0
|
||||
|
||||
def hashAndSign(self, bytes):
|
||||
"""Hash and sign the passed-in bytes.
|
||||
|
||||
This requires the key to have a private component. It performs
|
||||
a PKCS1-SHA1 signature on the passed-in data.
|
||||
|
||||
@type bytes: str or L{bytearray} of unsigned bytes
|
||||
@param bytes: The value which will be hashed and signed.
|
||||
|
||||
@rtype: L{bytearray} of unsigned bytes.
|
||||
@return: A PKCS1-SHA1 signature on the passed-in data.
|
||||
"""
|
||||
hashBytes = SHA1(bytearray(bytes))
|
||||
prefixedHashBytes = self._addPKCS1SHA1Prefix(hashBytes)
|
||||
sigBytes = self.sign(prefixedHashBytes)
|
||||
return sigBytes
|
||||
|
||||
def hashAndVerify(self, sigBytes, bytes):
|
||||
"""Hash and verify the passed-in bytes with the signature.
|
||||
|
||||
This verifies a PKCS1-SHA1 signature on the passed-in data.
|
||||
|
||||
@type sigBytes: L{bytearray} of unsigned bytes
|
||||
@param sigBytes: A PKCS1-SHA1 signature.
|
||||
|
||||
@type bytes: str or L{bytearray} of unsigned bytes
|
||||
@param bytes: The value which will be hashed and verified.
|
||||
|
||||
@rtype: bool
|
||||
@return: Whether the signature matches the passed-in data.
|
||||
"""
|
||||
hashBytes = SHA1(bytearray(bytes))
|
||||
|
||||
# Try it with/without the embedded NULL
|
||||
prefixedHashBytes1 = self._addPKCS1SHA1Prefix(hashBytes, False)
|
||||
prefixedHashBytes2 = self._addPKCS1SHA1Prefix(hashBytes, True)
|
||||
result1 = self.verify(sigBytes, prefixedHashBytes1)
|
||||
result2 = self.verify(sigBytes, prefixedHashBytes2)
|
||||
return (result1 or result2)
|
||||
|
||||
def sign(self, bytes):
|
||||
"""Sign the passed-in bytes.
|
||||
|
||||
This requires the key to have a private component. It performs
|
||||
a PKCS1 signature on the passed-in data.
|
||||
|
||||
@type bytes: L{bytearray} of unsigned bytes
|
||||
@param bytes: The value which will be signed.
|
||||
|
||||
@rtype: L{bytearray} of unsigned bytes.
|
||||
@return: A PKCS1 signature on the passed-in data.
|
||||
"""
|
||||
if not self.hasPrivateKey():
|
||||
raise AssertionError()
|
||||
paddedBytes = self._addPKCS1Padding(bytes, 1)
|
||||
m = bytesToNumber(paddedBytes)
|
||||
if m >= self.n:
|
||||
raise ValueError()
|
||||
c = self._rawPrivateKeyOp(m)
|
||||
sigBytes = numberToByteArray(c, numBytes(self.n))
|
||||
return sigBytes
|
||||
|
||||
def verify(self, sigBytes, bytes):
|
||||
"""Verify the passed-in bytes with the signature.
|
||||
|
||||
This verifies a PKCS1 signature on the passed-in data.
|
||||
|
||||
@type sigBytes: L{bytearray} of unsigned bytes
|
||||
@param sigBytes: A PKCS1 signature.
|
||||
|
||||
@type bytes: L{bytearray} of unsigned bytes
|
||||
@param bytes: The value which will be verified.
|
||||
|
||||
@rtype: bool
|
||||
@return: Whether the signature matches the passed-in data.
|
||||
"""
|
||||
if len(sigBytes) != numBytes(self.n):
|
||||
return False
|
||||
paddedBytes = self._addPKCS1Padding(bytes, 1)
|
||||
c = bytesToNumber(sigBytes)
|
||||
if c >= self.n:
|
||||
return False
|
||||
m = self._rawPublicKeyOp(c)
|
||||
checkBytes = numberToByteArray(m, numBytes(self.n))
|
||||
return checkBytes == paddedBytes
|
||||
|
||||
def encrypt(self, bytes):
|
||||
"""Encrypt the passed-in bytes.
|
||||
|
||||
This performs PKCS1 encryption of the passed-in data.
|
||||
|
||||
@type bytes: L{bytearray} of unsigned bytes
|
||||
@param bytes: The value which will be encrypted.
|
||||
|
||||
@rtype: L{bytearray} of unsigned bytes.
|
||||
@return: A PKCS1 encryption of the passed-in data.
|
||||
"""
|
||||
paddedBytes = self._addPKCS1Padding(bytes, 2)
|
||||
m = bytesToNumber(paddedBytes)
|
||||
if m >= self.n:
|
||||
raise ValueError()
|
||||
c = self._rawPublicKeyOp(m)
|
||||
encBytes = numberToByteArray(c, numBytes(self.n))
|
||||
return encBytes
|
||||
|
||||
def decrypt(self, encBytes):
|
||||
"""Decrypt the passed-in bytes.
|
||||
|
||||
This requires the key to have a private component. It performs
|
||||
PKCS1 decryption of the passed-in data.
|
||||
|
||||
@type encBytes: L{bytearray} of unsigned bytes
|
||||
@param encBytes: The value which will be decrypted.
|
||||
|
||||
@rtype: L{bytearray} of unsigned bytes or None.
|
||||
@return: A PKCS1 decryption of the passed-in data or None if
|
||||
the data is not properly formatted.
|
||||
"""
|
||||
if not self.hasPrivateKey():
|
||||
raise AssertionError()
|
||||
if len(encBytes) != numBytes(self.n):
|
||||
return None
|
||||
c = bytesToNumber(encBytes)
|
||||
if c >= self.n:
|
||||
return None
|
||||
m = self._rawPrivateKeyOp(c)
|
||||
decBytes = numberToByteArray(m, numBytes(self.n))
|
||||
#Check first two bytes
|
||||
if decBytes[0] != 0 or decBytes[1] != 2:
|
||||
return None
|
||||
#Scan through for zero separator
|
||||
for x in range(1, len(decBytes)-1):
|
||||
if decBytes[x]== 0:
|
||||
break
|
||||
else:
|
||||
return None
|
||||
return decBytes[x+1:] #Return everything after the separator
|
||||
|
||||
|
||||
|
||||
|
||||
# **************************************************************************
|
||||
# Helper Functions for RSA Keys
|
||||
# **************************************************************************
|
||||
|
||||
def _addPKCS1SHA1Prefix(self, bytes, withNULL=True):
|
||||
# There is a long history of confusion over whether the SHA1
|
||||
# algorithmIdentifier should be encoded with a NULL parameter or
|
||||
# with the parameter omitted. While the original intention was
|
||||
# apparently to omit it, many toolkits went the other way. TLS 1.2
|
||||
# specifies the NULL should be included, and this behavior is also
|
||||
# mandated in recent versions of PKCS #1, and is what tlslite has
|
||||
# always implemented. Anyways, verification code should probably
|
||||
# accept both. However, nothing uses this code yet, so this is
|
||||
# all fairly moot.
|
||||
if not withNULL:
|
||||
prefixBytes = bytearray(\
|
||||
[0x30,0x1f,0x30,0x07,0x06,0x05,0x2b,0x0e,0x03,0x02,0x1a,0x04,0x14])
|
||||
else:
|
||||
prefixBytes = bytearray(\
|
||||
[0x30,0x21,0x30,0x09,0x06,0x05,0x2b,0x0e,0x03,0x02,0x1a,0x05,0x00,0x04,0x14])
|
||||
prefixedBytes = prefixBytes + bytes
|
||||
return prefixedBytes
|
||||
|
||||
def _addPKCS1Padding(self, bytes, blockType):
|
||||
padLength = (numBytes(self.n) - (len(bytes)+3))
|
||||
if blockType == 1: #Signature padding
|
||||
pad = [0xFF] * padLength
|
||||
elif blockType == 2: #Encryption padding
|
||||
pad = bytearray(0)
|
||||
while len(pad) < padLength:
|
||||
padBytes = getRandomBytes(padLength * 2)
|
||||
pad = [b for b in padBytes if b != 0]
|
||||
pad = pad[:padLength]
|
||||
else:
|
||||
raise AssertionError()
|
||||
|
||||
padding = bytearray([0,blockType] + pad + [0])
|
||||
paddedBytes = padding + bytes
|
||||
return paddedBytes
|
||||
|
||||
|
||||
|
||||
|
||||
def _rawPrivateKeyOp(self, m):
|
||||
#Create blinding values, on the first pass:
|
||||
if not self.blinder:
|
||||
self.unblinder = getRandomNumber(2, self.n)
|
||||
self.blinder = powMod(invMod(self.unblinder, self.n), self.e,
|
||||
self.n)
|
||||
|
||||
#Blind the input
|
||||
m = (m * self.blinder) % self.n
|
||||
|
||||
#Perform the RSA operation
|
||||
c = self._rawPrivateKeyOpHelper(m)
|
||||
|
||||
#Unblind the output
|
||||
c = (c * self.unblinder) % self.n
|
||||
|
||||
#Update blinding values
|
||||
self.blinder = (self.blinder * self.blinder) % self.n
|
||||
self.unblinder = (self.unblinder * self.unblinder) % self.n
|
||||
|
||||
#Return the output
|
||||
return c
|
||||
|
||||
|
||||
def _rawPrivateKeyOpHelper(self, m):
|
||||
#Non-CRT version
|
||||
#c = powMod(m, self.d, self.n)
|
||||
|
||||
#CRT version (~3x faster)
|
||||
s1 = powMod(m, self.dP, self.p)
|
||||
s2 = powMod(m, self.dQ, self.q)
|
||||
h = ((s1 - s2) * self.qInv) % self.p
|
||||
c = s2 + self.q * h
|
||||
return c
|
||||
|
||||
def _rawPublicKeyOp(self, c):
|
||||
m = powMod(c, self.e, self.n)
|
||||
return m
|
||||
|
||||
def acceptsPassword(self):
|
||||
return False
|
||||
|
||||
def generate(bits):
|
||||
key = Python_RSAKey()
|
||||
p = getRandomPrime(bits//2, False)
|
||||
q = getRandomPrime(bits//2, False)
|
||||
t = lcm(p-1, q-1)
|
||||
key.n = p * q
|
||||
key.e = 65537
|
||||
key.d = invMod(key.e, t)
|
||||
key.p = p
|
||||
key.q = q
|
||||
key.dP = key.d % (p-1)
|
||||
key.dQ = key.d % (q-1)
|
||||
key.qInv = invMod(q, p)
|
||||
return key
|
||||
generate = staticmethod(generate)
|
||||
|
||||
Reference in New Issue
Block a user